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SUMMARY 

A third-order upwind finite element scheme is presented for numerical solutions of incompressible viscous 
flow problems. In order to achieve the third-order upwind approximation for only the convection term in 
the Navier-Stokes equations, a simplified Petrov-Galerkin formulation in which a modified weighting 
function is expressed by the sum of a standard weighting function and its second and third spatial derivatives 
is employed. The mixed method is also employed in the formulation so that a discretization with high-order 
accuracy in space is carried out by the use of linear elements. Because a truncation error caused by the 
third-order upwind approximation is smaller than that of a first-order upwind scheme, it is expected that the 
third-order upwind scheme will greatly improve the numerical solutions of the Navier-Stokes equations. 
Numerical results in one and two dimensions are presented to illustrate the effectiveness of the proposed 
scheme. 

KEY WORDS Third-order upwind scheme Finite element method Petrov-Galerkin formulation Mixed formulation 

INTRODUCTION 

In the computation of problems of convection-dominated flows, a scheme with a central 
difference approximation has given rise to solutions with spurious oscillations. On the other 
hand, upwind schemes'-'' have been successful in obtaining solutions for convection-dominated 
flows and, as a consequence, have been recognized as a tool to avoid spurious oscillations in 
numerical solutions. 

The early upwind schemes proposed by Christie et ~ l . , ~  Heinrich et aL4 and Zienkiewicz and 
Heinrich' are based on the Petrov-Galerkin formulation in which a modified weighting function 
is defined as a one-order higher function than a trial function. In these cases the modified 
weighting function is given as a standard weighting function, which leads to the Galerkin 
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formulation, plus a perturbation function. These upwind schemes have yielded satisfactory results 
for one-dimensional problems. Brooks and Hughes6 proposed the streamline upwind/ 
Petrov-Galerkin (SUPG) method with a discontinuous weighting function. The perturbation 
function used in the SUPG method is proportional to the first derivatives of the standard 
weighting function. Since the artificial viscous term added in the SUPG scheme acts only on the 
direction of flow, it is well known that the SUPG scheme is an overly effective scheme for the 
computation of multidimensional problems. 

In this paper an upwind finite element scheme with third-order upwind approximation'.' is 
presented for solutions of the incompressible Navier-Stokes equations. The development of the 
upwind scheme is based on the simplified Petrov-Galerkin formulation and the mixed method. 
The perturbation function considered in the formulation is expressed by the sum of second and 
third spatial derivatives of the standard weighting function and it is also dependent only on the 
spatial discretization. The term of third derivatives plays the important role of producing artificial 
dissipation in combination with the Navier-Stokes equations. In our approach, since the order of 
spatial differentials in the modified weighting function is reduced by virtue of the mixed method, 
bilinear interpolation functions can be applied to unknown functions in the Petrov-Galerkin 
formulation when the finite element approximation is carried out. As is well known, the spatial 
accuracy of the Galerkin finite element scheme constructed on a uniform mesh is globally 
second-order. However, by adding the term of the second derivatives into the modified weighting 
function and employing the mixed method, we can get the finite element scheme' with a central 
approximation of fourth-order accuracy with respect to differential operators in space. Therefore 
we can easily make the finite element scheme with third-order upwinding such as in the case of the 
upwind finite difference appro~imation.~.  

Finally, numerical results for some test problems are presented. Computation of the Burgers 
equation, known as a one-dimensional model of a viscous fluid, is first carried out for Re = 5, 100 
and 1000. Next, numerical results of flow past a circular cylinder in a two-dimensional calculation 
are presented for Re = 100 000. 

GOVERNING EQUATIONS 

Let R be a bounded region in R", where n is the number of space dimensions, and assume that 
R has a smooth boundary r. Let rl and Tz be non-overlapping subsets of T and let ni denote the 
outward normal vector on r. 

Consider the incompressible Navier-Stokes equations written in the non-dimensional form 

(1) 

ui, i = 0. (2) 

u.  +u.u. .=o.. . 
I ,  t J 1. J I J .  J 7  

In the above, ui is the flow velocity and aij is the total stress defined by 

where p is the pressure and Re denotes the Reynolds number. 

described as follows: 
The Dirichlet- and Neumann-type boundary conditions on rl and Tz respectively are 

ui=d i  on rl,  (4) 

oi=oi jnj=di  on Tz, ( 5 )  
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where tii and Bi are prescribed functions of co-ordinates xi and time t. 
The initial condition is 

ui=lioi at t = O ,  

where dOi  is a given function of x i .  

UPWIND FINITE ELEMENT SCHEME 

Petrov-Galerkin formulation 

We now briefly present a third-order upwind finite element scheme',' based on the 
Petrov-Galerkin formulation. Since a weak form of the Navier-Stokes equations is expressed in 
terms of the Petrov-Galerkin formulation, a modified weighting function tii that is considered in 
the formulation is usually given by the form 

iii= W i +  Gi, (7) 
where wi is the continuous weighting function which leads to the Galerkin formulation and tti 
denotes a perturbation function of wi. The weighting function for the continuity equation is 
denoted by q.  

In general a physical domain considered in computation is divided into many non-uniform 
elements so that the detailed numerical results in the domain are adequately obtained. In this 
case, when the non-uniform mesh is used for making the finite element scheme, it is well known 
that the accuracy of spatial discretization of the scheme becomes lower-order. Therefore, if we 
introduce the following mapping transformations' with respect to space and time, 

ti=li(Xl, ~ 2 ,  ~ 3 ,  t ) ,  t = t ,  (8) 
we can propose a high-order-accurate finite element scheme in the transformed space such as in 
the case of the finite difference analysis.'. * 

By the use of this transformation, the Petrov-Galerkin weighted residual equation of the 
Navier-Stokes equations can be written in the transformed space as 

where ( 
respectively. The contravariant velocity Ui in (9) is defined by 

= a/&, ( ) i i  = a/&, dR = J d n  and dT = I d r ,  in which J and I denote the Jacobians 

ui = ti, t + ti. juj-  

lj, iqui/jJdQ =O. (11) 

(10) 

Similarly, the weighted residual equation for the continuity equation becomes 

Equation (9) is the exact formulation to construct the finite element scheme with upwinding. It 
is clear from (9) that an upwind technique is employed in all the terms in the Navier-Stokes 
equations (for the case of a one-dimensional steady advectiondiffusion equation see Reference 2). 
In this case, because the upwind scheme developed is overly complex, it is desirable to adopt 
a simplified Petrov-Galerkin formulation in which the upwind technique is applied only to the 
convection term. 
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Then the simplified Petrov-Galerkin formulation that is used instead of (9) is written as 

In the following subsection we shall propose a methodology which will develop a third-order 
upwind scheme by using ( 1  2), but centrally second-order accuracy for viscosity and pressure 
terms. 

Mixed formulation 

The perturbation function Gi in (7) is defined by the form 

Gi= - 3  Attj)wi/(j j)-i$ "AL5:j) sgn(U(j))wi/(jjj), (13) 
where A t i  is the length of an element generated in the transformed domain and c1 is the parameter 
which is introduced to control the effect of artificial dissipation. For the index ( j )  with parentheses 
in the above expression, the summation convention is not employed. The range of the index ( j )  is 
defined as being equal to that of the repeated index j in the convection term of (12). 

We use linear elements in order to interpolate all functions except for the pressure p and the 
weighting function q, and both p and q are assumed as constant on each element. Moreover, since 
we desire the development of the finite element scheme with third-order accuracy with respect to 
the convection term in (12), we have to employ the following auxiliary functions in order to obtain 
such a scheme: 

oi=Jujui/ j ,  (14) 

$i(j)  =At?j)wi/(j j) .  
Substituting (3) and (13H15) into (12), we can get'** 

On the other hand, denoting the weighting functions by cij(i) and &j), the weighting residual 
equations of (14) and (15) are given as 

jG cij(pidfi= jG JUjcijfi)ui,jdfi, (17) 

FINITE ELEMENT EQUATIONS 

The finite element approximation of the weighted residual equations (16H18) leads to the 
following full discrete equations respectively: 

w ~ M v ~ , + w ~ B , ~ - @ ~ A , v - @ ~ A , v +  W ~ K V - W ~ C P = W ~ F ,  (19) 
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where V, W, a, 0 and P are the vectors of nodal values of ui, wi, mi,  c $ ~ ( ~ ,  and p respectively, F is 
the force vector, B1, BZ, Al ,  A3 and A4 are the matrices for the convection term, K is the matrix of 
the viscosity term, C is the gradient operator and M and Mo are lumped matrices. 

Substituting (20) and (21) into (19), we can obtain the following upwind finite element equations 
for the Navier-Stokes equations: 

MV,, +(N +K)V -CP = F, (22) 
where 

N =  BlMg 'Al +B:MiTA3 +B;MoTA4. 

The finite element equations for (1 1) are written as 

c'v = 0. (24) 
In the finite element equation (22) the convection matrix N is constructed with the third-order 

upwind approximation'*' and the other matrices K and C are of central approximation with 
second-order accuracy. 

NUMERICAL EXAMPLES 

Problem of a discontinuity in one dimension 

Navier-Stokes equations, 
The Burgers equation in non-conservation form, known as a one-dimensional model of the 

is calculated in order to demonstrate the validity of the third-order upwind finite element scheme 
proposed in the previous section. In this case the pressure term CP in (22) is neglected, becuase in 
the Burgers equation the pressure p is assumed as a constant in the computational domain. 

The initial conditions of this problem are given by 

u(x ,  0)=1 for -xmax<x<O, (26) 

u ( x ,  O)=O for O<x<x,,,. (27) 

U(-xXmax, t)= 1, (28) 

U(Xmax, t)=o* (29) 

The boundary conditions are 

On the other hand, equation (25) is equivalent to the conservation form 

1 
U , t + F . = - - , . , ,  Re 

where F = u2/2. The exact solution'' of (30) under the initial and boundary conditions (26H29) is 
given by 
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0.5(x - o2 
t 

Computation of the Burgers equation (25) in non-conservation form is achieved by the 
Galerkin finite element (GFE) scheme, which is of the central approximation with second-order 
accuracy, the SUPG scheme and the third-order upwind finite element (TOUFE) scheme (22) 
with a= 1, and then the numerical results are compared with the exact solution (31). 

In these discrete schemes, when the solution vector V" is given at a certain time level t,, the 
solution vector V n + l  at a new time level t,+ = & + A t  is computed by the following two-stage 
Lax-Wendroff scheme: 

L 

V n + l  =Vn+AtV;,+:'I2, (34) 
Typical results for the schemes at  Re= 5, 100 and lo00 are shown in Tables 1-111 respectively. 

For these calculations the initial velocity u(0,O) at x=O is particularly given as u(0,0)=05 and 
a fine mesh is used so that the spurious oscillations do not appear in the numerical solutions. 

In the computational results obtained by the SUPG and TOUFE schemes the velocity of the 

Table I. Propagating shock solution at t = 1, Re = 5, Ax =0.2, At =0.05, - 2 < x Q 2 

x -0.600 -0.400 -0.200 O@OO 0.200 0.400 0.600 0.800 1~ooO 1.200 1.400 1.600 
Scheme 

EXACT 0.989 0.973 0.937 0.868 0.753 0.591 0.409 0.247 0.132 0.063 0.027 0.011 
GFE 0.992 a978 0.945 0,876 0.755 0.585 0.398 0.238 0.127 0.062 0.028 0.012 
SUPG 0.991 0.975 0.940 0.869 0.747 0.578 0.394 0.236 0.126 0.062 0.028 0.012 
TOUFE 0.989 0.972 0.936 0.867 0.750 0.586 0.402 0.242 0.129 0.063 0.028 0.012 

Table 11. Propagating shock solution at t =  1, Re=100, Ax=O.O1, At=0.001, -1 b x Q  1 

x 0.300 0.400 0.420 0.440 0.460 0480 0.500 0.520 0.540 0.560 0.580 0.600 
Scheme 

EXACT 1000 0.993 0.982 0.953 0881 0731 0.500 0.269 0.119 0.047 0.018 0.007 
GFE 1.OOO 0,995 0.985 0.958 0.887 0.732 0.493 0.262 0.116 0.047 0.018 0.007 
SUPG 1.OOO Ck993 0.980 0.945 0.860 0689 0,446 0.230 0.100 0.040 0.016 0.006 
TOUFE 1000 0.993 0.982 0.951 0.878 0726 0.492 0.262 0.116 0.046 0.018 0.007 

Table 111. Propagating shock solution at t = l ,  Re=1000, Ax=OGOl, At=0.0001, - 1 Q x S l  

x 0.480 0.490 0.492 0.494 0.496 0498 0.500 0.502 0.504 0.506 0.508 0.510 
Scheme 

EXACT 1.OOO 0.993 0.982 0.953 0,881 0.731 0.500 0.269 0.119 0.047 0.018 0.007 
GFE 1,OOO 0.995 0.985 0.958 0.887 0.732 0.493 0.262 0.116 0.047 0.018 0.007 
SUPG 1.OOO 0.962 0.902 0.768 0.546 0307 0.142 0.058 0.023 0.009 0.003 04M1 
TOUFE 1,OOO 0.992 0.979 0.944 0.861 0.694 0.453 0.233 0,101 0.040 0.015 0.006 
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shock is slightly slower than the exact velocity. However, it is found that the solutions of the 
TOUFE scheme are better than those of the SUPG scheme. 

The results for the third-order upwind finite element scheme are plotted with the exact 
solutions in Figures 1-3. The profiles of propsgation of the shock are adequately captured. 

-2 0 2 

Figure 1. Propagating shock solution at t = 1, Re = 5, A x  =0.2, At = 0.05, -2 Q x < 2 0, exact; -, third-order upwind 
finite element 

X 

1 

- x  

- 1  0 1 

Figure 2. Propagating shock solution at t = l ,  Re=100 ,  Ax=O.Ol, A t = 0 0 0 1 ,  - 1  < x < 1 :  0, exact; -, third-order 
upwind finite element 

X 

- I  0 1 

Figure 3. Propagating shock solution at t =  1, R e =  1O00, Ax =0.001, At=0.0001, - 1 Q x  < 1: 0, exact; --, third-order 
upwind finite element 
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Flow past a circular cylinder 

Numerical results of flow past a circular cylinder at R e =  100 000 are presented. The finite 
element mesh near the circular cylinder used in the calculation is shown in Figure 4. The total 
number of elements in the computational domain is 9OOO and the total number of nodal points is 
9220. The circumference of the circular cylinder is divided into 200 elements. The initial condition 
of flow is zero velocity everywhere. Time integration for (22) and (24) is achieved by a fractional 
step method.13 ih this calculation, we put a=3. 

The velocity vectors and pressure contours for the fully developed Karman vortex are shown in 
Figures 5 and 6 respectively. The pressure distribution on the surface of the circular cylinder is 
shown in Figure 7. The mean drag coefficient CD obtained by this calculation is approximately 
1.30 and the Strouhal number St is approximately 0.192. Our results are in good agreement with 
the finite difference solutions9 and experimental results.'49 l 5  

CONCLUSIONS 

In this paper we have presented the third-order upwind finite element scheme and have shown 
some numerical examples. Applying the Taylor series expansion to the artificial dissipation term 
written by the discrete expression, the artificial dissipation term can be rewritten by expression of 
the fourth derivatives of the flow velocity. As is clear from numerical results in one and two 
dimensions, our scheme gives satisfactory solutions. Therefore the proposed third-order upwind 
finite element scheme is overly effective in order to obtain the solutions in the range of high 
Reynolds numbers. 

Figure 4. Finite element mesh near a circular cylinder 
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(a )  t = 42 

(b) t = 44 

(c) t = 46 

Figure 5. Computed velocity vector for Re= 100 OOO 



1022 N. KONDO, N. TOSAKA AND T. NISHIMURA 

(a) t = 42 

(b) t = 44 

( c )  t = 46 

Figure 6. Computed pressure contours for Re= 1OOOOO 
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degree 

Figure 7. Pressure distribution on the circular cylinder for Re= 1OOOOO 

APPENDIX 

For simplicity we show the property of the convection matrix N in (22) by the use of the 
convection term uu, in (25). In the case of the one-dimensional convection term, application of 
the procedure of Taylor series expansion to the discrete representation of M-’NV results in the 
following derivatives in non-conservation form and the truncation error: 

M- ‘NV = UuIc+& aAt’I U )uletcc+ 0(At4) .  (35) 
In the above the second term on the right-hand side denotes the artificial dissipation. 

REFERENCES 

1. N. Kondo, N. Tosaka and T. Nishimura, ‘Numerical simulation of viscous flows by the third-order upwind finite 
element method‘, 7’heor. Appl. Mech., 39, 237-250 (1990). 

2. N. Kondo, N. Tosaka and T. Nishimura, ‘Third-order upwind finite element formulations for incompressible viscous 
flow problems’, Comput. Methods Appl. Mech. Eng., 93, 169-187 (1991). 

3. L. Christie, D. F. Griffiths, A. R. Mitchell and 0. C. Zienkiewicz, ‘Finite element methods for second order differential 
equations with significant first derivative’, Int. j .  numer. methods eng., 10, 1389-1 396 (1976). 

4. J. C. Heinrich, P. S. Huyakorn, 0. C. Zienkiewicz and A. R. Mitchell, ‘An “upwind” finite element scheme for 
two-dimensional convective transport equations’, Int. j. numer. methods eng., 11, 131-143 (1977). 

5. 0. C. Zienkiewicz and J. T. Heinrich, ‘The finite element method and convective problems in fluid mechanics’, in R. H. 
Gallagher et al. (eds), Finite Elements in Fluids, Vol. 3, Wiley, New York, 1978, pp. 1-22, 

6. A. N. Brooks and J. T. R. Hughes, ‘Streamline upwind/Petrov-Galerkin formulations for convective dominated flows 
with particular emphasis of the incompressible Navier-Stokes equations’, Comput. Methods Appl. Mech. Eng., 32, 

7. B. P. Leonard, ‘A survey of finite differences with upwinding for numerical modelling of the incompressible convective 
diffusion equation’, in C. Taylor and K. Morgan (eds), Computational Techniques in Transient and Turbulent Flow, 
Pineridge, Swansea, 1981, pp. 1-35. 

8. T. Kawamura and K. Kuwahara, ‘Computation of high Reynolds number flow around a circular cylinder with surface 
roughness’, AIAA Paper 84-0340, AIAA 22nd Aerospace Science Meeting, 1984. 

9. T. Tamura and K. Kuwahara, ‘Direct finite difference computation of turbulent flow around a circular cylinder’, Proc. 
Int. Symp. of Computational Fluid Dynamics, 1989, pp. 701-706. 

10. M. Tabata and S .  Fujima, ‘An upwind finite element scheme for high-Reynolds-number flows’, Int. j .  numer. methods 
fluids, 12, 305-322 (1991). 

199-219 (1982). 



1024 N. KONDO, N. TOSAKA AND T. NISHIMURA 

11. F. Thompson, Z. U. A. Marsi and C. W. Mastin, Numerical Grid Generation, Foundation and Application, North- 

12. C .  A. J. Fletcher, Computational Techniquesfor Fluid Dynamics, Vol. 1 ,  Springer, Berlin, 1988. 
13. J. Donea, S. Giuliani, H. Lava1 and L. Quartapelle, 'Finite element solution of the unsteady Navier-Stokes equations 

14. B. Cantwell and D. Coles, 'An experimental study of entrainment and transport in the turbulent near wake of 

15. H. Schlichting, Boundary-layer Theory, 7th edn, McGraw-Hill, New York, 1979. 

Holland, Amsterdam, 1985. 

by a fractional step method', Comput. Methods Appl. Mech. Eng., 30, 53-73 (1982). 

a circular cylinder', J .  Fluid Mech., 136, 321-374 (1983). 


